• Colab 平台对于 轻量级/边缘计算 比较方便, 尤其是对这种教程性质的 notebook, 分享和运行都开箱即用

  • 但另一方面:

    : 免费版的 Colab 所给的硬件资源不是很稳定, 用太久的话会分不到 GPU, 虽然给的 GPU 肯定是比自己的开发机强很多, 但是跑大型项目肯定带不动 (而且 Colab 单次运行最多持续 6h, 一段时间没动作的话会断连, 断开后再过一阵 runtime 会被重置)

  • : 可以用它来学习下怎么搭环境以及一些小测试

    毕竟生产服务器申请不易 / 环境也不能乱动

    受系统和网络限制, 在开发机搭环境并不理想

分割线

装环境

从安装到放弃到爬出坑 :(
跟着这几篇装的环境:[2][3], 有借鉴意义但是指导不明确
个人先跟着官方出的视频教程和 openbayes 上的 notebook 试了试水, 很深 [1]; 最后找到一个源库 tutorial-fork 的 colab-notebook [4]

预先装上 cuda, cudnn (colab自带)

依赖链: cuda <- pytorch <- mmcv-full <- mmdet

每一步依赖前面环境的版本, 即使后面能装上也可能不适配, 任何一步有问题都 can't run

分割线

# ====================可选, colab并不自带conda=====================
!conda create -n openmmlab -y
!conda activate openmmlab
!conda init
/bin/bash: conda: command not found
/bin/bash: conda: command not found
/bin/bash: conda: command not found
# ================== 一键装好环境 =======================
# 如果这里有问题可以重启一下内核: 代码执行程序 -> 重新启动代码执行程序

!python -m pip install --upgrade pip

# 注意对应机子配置: https://pytorch.org/
# install dependencies: (use cu111 because colab has CUDA 11.1)
%pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

# windows 平台不用装了, 一定会卡在这
# https://github.com/open-mmlab/mmcv/blob/master/README_zh-CN.md
%pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html

# 与pip/conda同级的专门给mm-lab用的包管理器, 报错率很高
%pip install openmim

# 依赖 mmcv, 如果用mim装的话大概率有问题
# 后面要用到源码库的 config, 可选用源库安装
%pip install mmdet mmsegmentation
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: pip in /usr/local/lib/python3.7/dist-packages (21.1.3)
Collecting pip
  Downloading pip-22.1.2-py3-none-any.whl (2.1 MB)
[K     |████████████████████████████████| 2.1 MB 37.1 MB/s
[?25hInstalling collected packages: pip
  Attempting uninstall: pip
    Found existing installation: pip 21.1.3
    Uninstalling pip-21.1.3:
      Successfully uninstalled pip-21.1.3
Successfully installed pip-22.1.2
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.9.0+cu111
  Downloading https://download.pytorch.org/whl/cu111/torch-1.9.0%2Bcu111-cp37-cp37m-linux_x86_64.whl (2041.3 MB)
[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m2.0/2.0 GB[0m [31m83.9 MB/s[0m eta [36m0:00:01[0mtcmalloc: large alloc 2041348096 bytes == 0x25c6000 @  0x7fb296fd21e7 0x4a3940 0x4a39cc 0x592b76 0x4df71e 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x593dd7 0x511e2c 0x549576 0x593fce 0x548ae9 0x5127f1 0x549576 0x593fce 0x511e2c
[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m2.0/2.0 GB[0m [31m82.2 MB/s[0m eta [36m0:00:01[0mtcmalloc: large alloc 2551685120 bytes == 0x7c08e000 @  0x7fb296fd3615 0x592b76 0x4df71e 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x593dd7 0x511e2c 0x549576 0x593fce 0x548ae9 0x5127f1 0x549576 0x593fce 0x511e2c 0x549576 0x593fce
tcmalloc: large alloc 2041348096 bytes == 0x25c6000 @  0x7fb296fd21e7 0x4a3940 0x5b438c 0x5b46f7 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x4bcb19 0x59c019 0x595ef6 0x5fbece 0x594b72 0x548cc1 0x51566f 0x593dd7 0x548ae9 0x51566f 0x549576 0x593fce 0x548ae9 0x51566f 0x549576 0x593fce 0x548ae9 0x5127f1
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m2.0/2.0 GB[0m [31m836.7 kB/s[0m eta [36m0:00:00[0m
[?25hCollecting torchvision==0.10.0+cu111
  Downloading https://download.pytorch.org/whl/cu111/torchvision-0.10.0%2Bcu111-cp37-cp37m-linux_x86_64.whl (23.2 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m23.2/23.2 MB[0m [31m19.8 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch==1.9.0+cu111) (4.1.1)
Requirement already satisfied: pillow>=5.3.0 in /usr/local/lib/python3.7/dist-packages (from torchvision==0.10.0+cu111) (7.1.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torchvision==0.10.0+cu111) (1.21.6)
Installing collected packages: torch, torchvision
  Attempting uninstall: torch
    Found existing installation: torch 1.11.0+cu113
    Uninstalling torch-1.11.0+cu113:
      Successfully uninstalled torch-1.11.0+cu113
  Attempting uninstall: torchvision
    Found existing installation: torchvision 0.12.0+cu113
    Uninstalling torchvision-0.12.0+cu113:
      Successfully uninstalled torchvision-0.12.0+cu113
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchtext 0.12.0 requires torch==1.11.0, but you have torch 1.9.0+cu111 which is incompatible.
torchaudio 0.11.0+cu113 requires torch==1.11.0, but you have torch 1.9.0+cu111 which is incompatible.[0m[31m
[0mSuccessfully installed torch-1.9.0+cu111 torchvision-0.10.0+cu111
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Looking in links: https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
Collecting mmcv-full
  Downloading https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/mmcv_full-1.5.3-cp37-cp37m-manylinux1_x86_64.whl (46.3 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m46.3/46.3 MB[0m [31m8.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting addict
  Downloading addict-2.4.0-py3-none-any.whl (3.8 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (1.21.6)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (3.13)
Requirement already satisfied: opencv-python>=3 in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (4.1.2.30)
Collecting yapf
  Downloading yapf-0.32.0-py2.py3-none-any.whl (190 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m190.2/190.2 kB[0m [31m20.0 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (7.1.2)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (21.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->mmcv-full) (3.0.9)
Installing collected packages: yapf, addict, mmcv-full
Successfully installed addict-2.4.0 mmcv-full-1.5.3 yapf-0.32.0
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting openmim
  Downloading openmim-0.1.6.tar.gz (37 kB)
  Preparing metadata (setup.py) ... [?25l[?25hdone
Requirement already satisfied: Click==7.1.2 in /usr/local/lib/python3.7/dist-packages (from openmim) (7.1.2)
Collecting colorama
  Downloading colorama-0.4.5-py2.py3-none-any.whl (16 kB)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from openmim) (2.23.0)
Collecting model-index
  Downloading model_index-0.1.11-py3-none-any.whl (34 kB)
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from openmim) (1.3.5)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from openmim) (0.8.9)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.13)
Requirement already satisfied: markdown in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.3.7)
Collecting ordered-set
  Downloading ordered_set-4.1.0-py3-none-any.whl (7.6 kB)
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (1.21.6)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2022.1)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2022.6.15)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (1.24.3)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2.10)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->openmim) (1.15.0)
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown->model-index->openmim) (4.11.4)
Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (4.1.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (3.8.0)
Building wheels for collected packages: openmim
  Building wheel for openmim (setup.py) ... [?25l[?25hdone
  Created wheel for openmim: filename=openmim-0.1.6-py2.py3-none-any.whl size=43919 sha256=4da5d601b4527ed104f9f6821d3c8d898197648313abcbb891328d3a1a7d1baf
  Stored in directory: /root/.cache/pip/wheels/a8/33/de/415150be8f048d1bcfd72c6a452978e71e229ee0769f1752f8
Successfully built openmim
Installing collected packages: ordered-set, colorama, model-index, openmim
Successfully installed colorama-0.4.5 model-index-0.1.11 openmim-0.1.6 ordered-set-4.1.0
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting mmdet
  Downloading mmdet-2.25.0-py3-none-any.whl (1.4 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.4/1.4 MB[0m [31m60.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mmsegmentation
  Downloading mmsegmentation-0.25.0-py3-none-any.whl (804 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m805.0/805.0 kB[0m [31m62.9 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: pycocotools in /usr/local/lib/python3.7/dist-packages (from mmdet) (2.0.4)
Collecting terminaltables
  Downloading terminaltables-3.1.10-py2.py3-none-any.whl (15 kB)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from mmdet) (3.2.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmdet) (1.21.6)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from mmdet) (1.15.0)
Collecting mmcls>=0.20.1
  Downloading mmcls-0.23.1-py2.py3-none-any.whl (577 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m577.3/577.3 kB[0m [31m54.3 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: prettytable in /usr/local/lib/python3.7/dist-packages (from mmsegmentation) (3.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmsegmentation) (21.3)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (3.0.9)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (1.4.3)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from prettytable->mmsegmentation) (4.11.4)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prettytable->mmsegmentation) (0.2.5)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->mmdet) (4.1.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->prettytable->mmsegmentation) (3.8.0)
Installing collected packages: terminaltables, mmcls, mmsegmentation, mmdet
Successfully installed mmcls-0.23.1 mmdet-2.25.0 mmsegmentation-0.25.0 terminaltables-3.1.10
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0m
# 验证安装
!nvcc -V
!pip list | grep mm

from mmcv import collect_env
collect_env()
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
community                     1.0.0b1
googleapis-common-protos      1.56.2
mmcls                         0.23.1
mmcv-full                     1.5.2
mmdet                         2.25.0
mmsegmentation                0.25.0
pyviz-comms                   2.2.0
snowballstemmer               2.2.0
torchsummary                  1.5.1





{'CUDA available': True,
 'CUDA_HOME': '/usr/local/cuda',
 'GCC': 'x86_64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0',
 'GPU 0': 'Tesla T4',
 'MMCV': '1.5.2',
 'MMCV CUDA Compiler': '11.1',
 'MMCV Compiler': 'GCC 7.3',
 'NVCC': 'Cuda compilation tools, release 11.1, V11.1.105',
 'OpenCV': '4.1.2',
 'PyTorch': '1.9.0+cu111',
 'PyTorch compiling details': 'PyTorch built with:\n  - GCC 7.3\n  - C++ Version: 201402\n  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n  - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)\n  - OpenMP 201511 (a.k.a. OpenMP 4.5)\n  - NNPACK is enabled\n  - CPU capability usage: AVX2\n  - CUDA Runtime 11.1\n  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n  - CuDNN 8.0.5\n  - Magma 2.5.2\n  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n',
 'Python': '3.7.13 (default, Apr 24 2022, 01:04:09) [GCC 7.5.0]',
 'TorchVision': '0.10.0+cu111',
 'sys.platform': 'linux'}

Clone-repo

clone 项目源码库下来, 后面的 验证/训练 要用到源码库的配置和工具等 (用到哪个库 Clone 哪个就行, 当然全 clone 也没问题)

注意后面运行前切一下路径

# !rm -rf /content/mmdetection
%cd /content
!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection
# %pip install -e .

# 后续 pwd = /content/mmdetection
/content
Cloning into 'mmdetection'...
remote: Enumerating objects: 24969, done.[K
remote: Counting objects: 100% (10/10), done.[K
remote: Compressing objects: 100% (9/9), done.[K
remote: Total 24969 (delta 3), reused 6 (delta 1), pack-reused 24959[K
Receiving objects: 100% (24969/24969), 37.76 MiB | 11.27 MiB/s, done.
Resolving deltas: 100% (17495/17495), done.
/content/mmdetection
# !rm -rf /content/mmdetection3d
%cd /content
!git clone https://github.com/open-mmlab/mmdetection3d.git
%cd mmdetection3d

# mmdetection3d 有一些额外的依赖需要安装
%pip install -e .

# --show 用到open3D来展示, 但只能在本机create窗口, colab 上会报错
# %pip install open3d

# 后续 pwd = /content/mmdetection3d
/content
Cloning into 'mmdetection3d'...
remote: Enumerating objects: 13252, done.[K
remote: Counting objects: 100% (148/148), done.[K
remote: Compressing objects: 100% (116/116), done.[K
remote: Total 13252 (delta 44), reused 102 (delta 32), pack-reused 13104[K
Receiving objects: 100% (13252/13252), 15.96 MiB | 14.34 MiB/s, done.
Resolving deltas: 100% (9134/9134), done.
/content/mmdetection3d
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Obtaining file:///content/mmdetection3d
  Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting lyft_dataset_sdk
  Downloading lyft_dataset_sdk-0.0.8-py2.py3-none-any.whl (32 kB)
Collecting networkx<2.3,>=2.2
  Downloading networkx-2.2.zip (1.7 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.7/1.7 MB[0m [31m68.0 MB/s[0m eta [36m0:00:00[0m
[?25h  Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting numba==0.53.0
  Downloading numba-0.53.0-cp37-cp37m-manylinux2014_x86_64.whl (3.4 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m3.4/3.4 MB[0m [31m83.6 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (1.21.6)
Collecting nuscenes-devkit
  Downloading nuscenes_devkit-1.1.9-py3-none-any.whl (312 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m312.6/312.6 kB[0m [31m35.9 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting plyfile
  Downloading plyfile-0.7.4-py3-none-any.whl (39 kB)
Requirement already satisfied: scikit-image in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (0.18.3)
Requirement already satisfied: tensorboard in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (2.8.0)
Collecting trimesh<2.35.40,>=2.35.39
  Downloading trimesh-2.35.39.tar.gz (281 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m282.0/282.0 kB[0m [31m35.0 MB/s[0m eta [36m0:00:00[0m
[?25h  Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting llvmlite<0.37,>=0.36.0rc1
  Downloading llvmlite-0.36.0-cp37-cp37m-manylinux2010_x86_64.whl (25.3 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m25.3/25.3 MB[0m [31m60.6 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba==0.53.0->mmdet3d==1.0.0rc3) (57.4.0)
Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.7/dist-packages (from networkx<2.3,>=2.2->mmdet3d==1.0.0rc3) (4.4.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from trimesh<2.35.40,>=2.35.39->mmdet3d==1.0.0rc3) (1.4.1)
Requirement already satisfied: scikit-learn>=0.19.2 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.0.2)
Collecting pyquaternion>=0.9.5
  Downloading pyquaternion-0.9.9-py3-none-any.whl (14 kB)
Requirement already satisfied: opencv-python>=3.4.2.17 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.1.2.30)
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.3.5)
Collecting flake8
  Downloading flake8-4.0.1-py2.py3-none-any.whl (64 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m64.1/64.1 kB[0m [31m9.5 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: tqdm>=4.25.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.64.0)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.2.2)
Requirement already satisfied: Pillow>=5.2.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (7.1.2)
Collecting black
  Downloading black-22.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.4/1.4 MB[0m [31m71.8 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting fire
  Downloading fire-0.4.0.tar.gz (87 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m87.7/87.7 kB[0m [31m10.6 MB/s[0m eta [36m0:00:00[0m
[?25h  Preparing metadata (setup.py) ... [?25l[?25hdone
Requirement already satisfied: Shapely>=1.6.4.post2 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.8.2)
Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (5.5.0)
Requirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.6.4)
Requirement already satisfied: cachetools>=3.1.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.2.4)
Requirement already satisfied: pycocotools>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (2.0.4)
Requirement already satisfied: jupyter in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (1.0.0)
Requirement already satisfied: descartes in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (2.4.1)
Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (2021.11.2)
Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (1.3.0)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.4.6)
Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.46.3)
Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.37.1)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.6.1)
Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (3.3.7)
Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (3.17.3)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.8.1)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.0.1)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (2.23.0)
Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.35.0)
Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (1.15.0)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (0.2.8)
Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (4.8)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmdet3d==1.0.0rc3) (1.3.1)
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard->mmdet3d==1.0.0rc3) (4.11.4)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.4.3)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.0.9)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (2022.6.15)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (3.0.4)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.19.2->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.1.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.19.2->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.1.0)
Collecting click>=8.0.0
  Downloading click-8.1.3-py3-none-any.whl (96 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m96.6/96.6 kB[0m [31m14.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mypy-extensions>=0.4.3
  Downloading mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB)
Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.1.1)
Collecting pathspec>=0.9.0
  Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB)
Collecting platformdirs>=2
  Downloading platformdirs-2.5.2-py3-none-any.whl (14 kB)
Collecting typed-ast>=1.4.2
  Downloading typed_ast-1.5.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (843 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m843.7/843.7 kB[0m [31m59.7 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from black->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2.0.1)
Requirement already satisfied: termcolor in /usr/local/lib/python3.7/dist-packages (from fire->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.1.0)
Collecting pyflakes<2.5.0,>=2.4.0
  Downloading pyflakes-2.4.0-py2.py3-none-any.whl (69 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m69.7/69.7 kB[0m [31m10.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pycodestyle<2.9.0,>=2.8.0
  Downloading pycodestyle-2.8.0-py2.py3-none-any.whl (42 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m42.1/42.1 kB[0m [31m5.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting flake8
  Downloading flake8-4.0.0-py2.py3-none-any.whl (64 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m64.1/64.1 kB[0m [31m8.3 MB/s[0m eta [36m0:00:00[0m
[?25h  Downloading flake8-3.9.2-py2.py3-none-any.whl (73 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m73.1/73.1 kB[0m [31m10.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pyflakes<2.4.0,>=2.3.0
  Downloading pyflakes-2.3.1-py2.py3-none-any.whl (68 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m68.8/68.8 kB[0m [31m10.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pycodestyle<2.8.0,>=2.7.0
  Downloading pycodestyle-2.7.0-py2.py3-none-any.whl (41 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m41.7/41.7 kB[0m [31m5.9 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mccabe<0.7.0,>=0.6.0
  Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)
Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.6.1)
Requirement already satisfied: qtconsole in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.1)
Requirement already satisfied: jupyter-console in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.2.0)
Requirement already satisfied: ipywidgets in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (7.7.0)
Requirement already satisfied: ipykernel in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.10.1)
Requirement already satisfied: notebook in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.1)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2022.1)
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (8.0.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (21.4.0)
Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (8.13.0)
Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.11.0)
Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.4.0)
Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (0.7.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmdet3d==1.0.0rc3) (3.8.0)
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (0.4.8)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmdet3d==1.0.0rc3) (3.2.0)
Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.5)
Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.1.1)
Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.1.1)
Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.5.0)
Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.4.0)
Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.2.0)
Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (3.6.0)
Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.6.1)
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.0.18)
Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.5.0)
Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.10.0)
Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.8.4)
Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.6.0)
Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.4)
Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.0.0)
Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.1)
Requirement already satisfied: jinja2>=2.4 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.11.3)
Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.8.0)
Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.13.3)
Requirement already satisfied: qtpy>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.1.0)
Requirement already satisfied: pyzmq>=17.1 in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (23.1.0)
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.8.1)
Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.8.0)
Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.5)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2>=2.4->nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.0.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.3.3)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.15.3)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.0->jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from qtpy>=2.0.1->qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (21.3)
Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (from terminado>=0.8.1->notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.0)
Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.5.1)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.7.1)
Building wheels for collected packages: networkx, trimesh, fire
  Building wheel for networkx (setup.py) ... [?25l[?25hdone
  Created wheel for networkx: filename=networkx-2.2-py2.py3-none-any.whl size=1526923 sha256=78db1be6fc20922f3580e77e808eafa1d3e65a486412acdb9563916946595371
  Stored in directory: /root/.cache/pip/wheels/49/fb/7f/02c31ca537b34e1073844b733832e4c3a94071d8edda2c0faa
  Building wheel for trimesh (setup.py) ... [?25l[?25hdone
  Created wheel for trimesh: filename=trimesh-2.35.39-py3-none-any.whl size=324073 sha256=29142163d4899e9eba3c700ea4c47bbdd7b954992e87d68c3003f8a352422bd8
  Stored in directory: /root/.cache/pip/wheels/cb/8d/ba/483fb1c41aa97d67177547c5b380232851007c950f615b1277
  Building wheel for fire (setup.py) ... [?25l[?25hdone
  Created wheel for fire: filename=fire-0.4.0-py2.py3-none-any.whl size=115942 sha256=bf7fdd9c4beb982c2668c3bb8cbcba7f9b8df5fbccc067e369e5553869e63b5b
  Stored in directory: /root/.cache/pip/wheels/8a/67/fb/2e8a12fa16661b9d5af1f654bd199366799740a85c64981226
Successfully built networkx trimesh fire
Installing collected packages: mypy-extensions, mccabe, typed-ast, pyquaternion, pyflakes, pycodestyle, plyfile, platformdirs, pathspec, networkx, llvmlite, fire, trimesh, numba, flake8, click, black, lyft_dataset_sdk, nuscenes-devkit, mmdet3d
  Attempting uninstall: networkx
    Found existing installation: networkx 2.6.3
    Uninstalling networkx-2.6.3:
      Successfully uninstalled networkx-2.6.3
  Attempting uninstall: llvmlite
    Found existing installation: llvmlite 0.34.0
    Uninstalling llvmlite-0.34.0:
      Successfully uninstalled llvmlite-0.34.0
  Attempting uninstall: numba
    Found existing installation: numba 0.51.2
    Uninstalling numba-0.51.2:
      Successfully uninstalled numba-0.51.2
  Attempting uninstall: click
    Found existing installation: click 7.1.2
    Uninstalling click-7.1.2:
      Successfully uninstalled click-7.1.2
  Running setup.py develop for mmdet3d
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
openmim 0.1.6 requires Click==7.1.2, but you have click 8.1.3 which is incompatible.
flask 1.1.4 requires click<8.0,>=5.1, but you have click 8.1.3 which is incompatible.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.[0m[31m
[0mSuccessfully installed black-22.3.0 click-8.1.3 fire-0.4.0 flake8-3.9.2 llvmlite-0.36.0 lyft_dataset_sdk-0.0.8 mccabe-0.6.1 mmdet3d-1.0.0rc3 mypy-extensions-0.4.3 networkx-2.2 numba-0.53.0 nuscenes-devkit-1.1.9 pathspec-0.9.0 platformdirs-2.5.2 plyfile-0.7.4 pycodestyle-2.7.0 pyflakes-2.3.1 pyquaternion-0.9.9 trimesh-2.35.39 typed-ast-1.5.4
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0m

分割线

验证

Detection

# mim 也可以用来search/download,不过 doc 在捉迷藏..不知道怎么用
# https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn
# 跟教程一样的命令...失效了?
# !mim search mmdet --model 'mask r-cnn'
# !mim download mmdet --config mask_rcnn_r50_fpn_2x_coco --dest ./_model

%cd /content/mmdetection

# 下载并分别测试下面两个 pre-trained model-checkpoints
!mkdir checkpoints
!wget -c https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth \
-O checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
!wget -c https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth \
-O checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth

--2022-06-10 12:13:06--  https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 177866862 (170M) [application/octet-stream]
Saving to: ‘checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth’

checkpoints/mask_rc 100%[===================>] 169.63M  9.84MB/s    in 18s

2022-06-10 12:13:25 (9.20 MB/s) - ‘checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth’ saved [177866862/177866862]

--2022-06-10 12:13:25--  https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 167291982 (160M) [application/octet-stream]
Saving to: ‘checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth’

checkpoints/faster_ 100%[===================>] 159.54M  10.9MB/s    in 14s

2022-06-10 12:13:39 (11.5 MB/s) - ‘checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth’ saved [167291982/167291982]
from mmdet.apis import init_detector, inference_detector, show_result_pyplot

config = 'configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py'
checkpoint = 'checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth'

# 在 CPU 上需要设置 device='cpu' ; GPU 上设置 device='cuda:0'
# 使用 mmdetection 源库自带的 demo/demo.jpg
model = init_detector(config, checkpoint, device='cuda:0')
result = inference_detector(model, 'demo/demo.jpg')

show_result_pyplot(model, 'demo/demo.jpg', result)
load checkpoint from local path: checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth


/content/mmdetection/mmdet/datasets/utils.py:70: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
  'data pipeline in your config file.', UserWarning)

png

import mmcv
from mmcv.runner import load_checkpoint

from mmdet.apis import inference_detector, show_result_pyplot
from mmdet.models import build_detector

# Choose to use a config and initialize the detector
config = 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py'
# Setup a checkpoint file to load
checkpoint = 'checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth'

# Set the device to be used for evaluation
device='cuda:0'

# Load the config
config = mmcv.Config.fromfile(config)
# Set pretrained to be None since we do not need pretrained model here
config.model.pretrained = None

# Initialize the detector
model = build_detector(config.model)

# Load checkpoint
checkpoint = load_checkpoint(model, checkpoint, map_location=device)

# Set the classes of models for inference
model.CLASSES = checkpoint['meta']['CLASSES']
# We need to set the model's cfg for inference
model.cfg = config
# Convert the model to GPU
model.to(device)
# Convert the model into evaluation mode
model.eval()

# Use the detector to do inference
img = 'demo/demo.jpg'

result = inference_detector(model, img)
# Let's plot the result
show_result_pyplot(model, img, result, score_thr=0.3)
load checkpoint from local path: checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth


/content/mmdetection/mmdet/datasets/utils.py:70: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
  'data pipeline in your config file.', UserWarning)

png

分割线

Detection3D

%cd /content/mmdetection3d
!mkdir checkpoints
!wget -c https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth \
-O checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth
/content/mmdetection3d
--2022-06-23 16:57:39--  https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3890927 (3.7M) [application/octet-stream]
Saving to: ‘checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth’

checkpoints/votenet 100%[===================>]   3.71M  22.2MB/s    in 0.2s

2022-06-23 16:57:39 (22.2 MB/s) - ‘checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth’ saved [3890927/3890927]
# https://mmdetection3d.readthedocs.io/zh_CN/latest/getting_started.html#id10

from mmdet3d.apis import init_model, inference_detector

config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth'

# 从配置文件和预训练的模型文件中构建模型
model = init_model(config_file, checkpoint_file, device='cuda:0')

# 测试单个文件并可视化结果
point_cloud = 'demo/data/scannet/scene0000_00.bin'
result, data = inference_detector(model, point_cloud)
# 可视化结果并且将结果保存到 'results' 文件夹
model.show_results(data, result, out_dir='results')
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
  'Unnecessary conv bias before batch/instance norm')


load checkpoint from local path: checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth


/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)

分割线

Custom-training

  1. 选择+下载预训练模型和数据集

    参数解释: mask_rcnn_r50_fpn_2x_coco

    mask_rcnn 中不同的 backbone (主干网络)

    r50: 50层ResNet

    fpn: 特征金字塔

    2x: learning rate schedule

  2. 定义数据集类 + config

  3. 调用 API 训练 + 评估

  4. 用训练好的模型推理测试


Detection

# pre-trained model 在上面下载好了, 这里只下载数据集
!wget https://download.openmmlab.com/mmdetection/data/kitti_tiny.zip
!unzip kitti_tiny.zip > /dev/null

# Let's take a look at the dataset image
import mmcv
import matplotlib.pyplot as plt

img = mmcv.imread('kitti_tiny/training/image_2/000073.jpeg')
plt.figure(figsize=(25, 20))
plt.imshow(mmcv.bgr2rgb(img))
plt.show()
--2022-06-23 18:02:38--  https://download.openmmlab.com/mmdetection/data/kitti_tiny.zip
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 6918271 (6.6M) [application/zip]
Saving to: ‘kitti_tiny.zip’

kitti_tiny.zip      100%[===================>]   6.60M  15.2MB/s    in 0.4s

2022-06-23 18:02:39 (15.2 MB/s) - ‘kitti_tiny.zip’ saved [6918271/6918271]

png

# 自定义数据集格式 'KittiTinyDataset' 并注册到 mmdet
import copy
import os.path as osp

import mmcv
import numpy as np

from mmdet.datasets.builder import DATASETS
from mmdet.datasets.custom import CustomDataset

@DATASETS.register_module()
class KittiTinyDataset(CustomDataset):

CLASSES = ('Car', 'Pedestrian', 'Cyclist')

def load_annotations(self, ann_file):
cat2label = {k: i for i, k in enumerate(self.CLASSES)}
# load image list from file
image_list = mmcv.list_from_file(self.ann_file)

data_infos = []
# convert annotations to middle format
for image_id in image_list:
filename = f'{self.img_prefix}/{image_id}.jpeg'
image = mmcv.imread(filename)
height, width = image.shape[:2]

data_info = dict(filename=f'{image_id}.jpeg', width=width, height=height)

# load annotations
label_prefix = self.img_prefix.replace('image_2', 'label_2')
lines = mmcv.list_from_file(osp.join(label_prefix, f'{image_id}.txt'))

content = [line.strip().split(' ') for line in lines]
bbox_names = [x[0] for x in content]
bboxes = [[float(info) for info in x[4:8]] for x in content]

gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_labels_ignore = []

# filter 'DontCare'
for bbox_name, bbox in zip(bbox_names, bboxes):
if bbox_name in cat2label:
gt_labels.append(cat2label[bbox_name])
gt_bboxes.append(bbox)
else:
gt_labels_ignore.append(-1)
gt_bboxes_ignore.append(bbox)

data_anno = dict(
bboxes=np.array(gt_bboxes, dtype=np.float32).reshape(-1, 4),
labels=np.array(gt_labels, dtype=np.long),
bboxes_ignore=np.array(gt_bboxes_ignore,
dtype=np.float32).reshape(-1, 4),
labels_ignore=np.array(gt_labels_ignore, dtype=np.long))

data_info.update(ann=data_anno)
data_infos.append(data_info)

return data_infos
# mmdet 配置
from mmcv import Config
from mmdet.apis import set_random_seed

cfg = Config.fromfile('configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py')
# If we need to finetune a model based on a pre-trained detector, we need to use load_from to set the path of checkpoints.
cfg.load_from = 'checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth'

# Modify dataset type and path
cfg.dataset_type = 'KittiTinyDataset'
cfg.data_root = 'kitti_tiny/'

cfg.data.test.type = 'KittiTinyDataset'
cfg.data.test.data_root = 'kitti_tiny/'
cfg.data.test.ann_file = 'train.txt'
cfg.data.test.img_prefix = 'training/image_2'

cfg.data.train.type = 'KittiTinyDataset'
cfg.data.train.data_root = 'kitti_tiny/'
cfg.data.train.ann_file = 'train.txt'
cfg.data.train.img_prefix = 'training/image_2'

cfg.data.val.type = 'KittiTinyDataset'
cfg.data.val.data_root = 'kitti_tiny/'
cfg.data.val.ann_file = 'val.txt'
cfg.data.val.img_prefix = 'training/image_2'

# modify num classes of the model in box head
cfg.model.roi_head.bbox_head.num_classes = 3

# Set up working dir to save files and logs.
cfg.work_dir = './tutorial_exps'

# The original learning rate (LR) is set for 8-GPU training.
# We divide it by 8 since we only use one GPU.
cfg.optimizer.lr = 0.02 / 8
cfg.lr_config.warmup = None
cfg.log_config.interval = 10

# Change the evaluation metric since we use customized dataset.
cfg.evaluation.metric = 'mAP'
# We can set the evaluation interval to reduce the evaluation times
cfg.evaluation.interval = 12
# We can set the checkpoint saving interval to reduce the storage cost
cfg.checkpoint_config.interval = 12

# Set seed thus the results are more reproducible
cfg.seed = 0
set_random_seed(0, deterministic=False)

cfg.device='cuda'
cfg.gpu_ids = range(1)

# We can also use tensorboard to log the training process
cfg.log_config.hooks = [
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')]

# We can initialize the logger for training and have a look at the final config used for training
# print(f'Config:\n{cfg.pretty_text}')

# Train a new detector
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.apis import train_detector


# Build dataset
datasets = [build_dataset(cfg.data.train)]

# Build the detector
model = build_detector(cfg.model)
# build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))
# Add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES

# Create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))

# 报错:AttributeError: 'ConfigDict' object has no attribute 'device'
# https://github.com/open-mmlab/mmdetection/issues/7901
# 在上面 cfg 添加了 cfg.device='cuda'
train_detector(model, datasets, cfg, distributed=False, validate=True)
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:54: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:57: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
/content/mmdetection/mmdet/datasets/custom.py:180: UserWarning: CustomDataset does not support filtering empty gt images.
  'CustomDataset does not support filtering empty gt images.')
2022-06-07 16:41:00,736 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled.
2022-06-07 16:41:00,899 - mmdet - INFO - load checkpoint from local path: checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
2022-06-07 16:41:01,026 - mmdet - WARNING - The model and loaded state dict do not match exactly

size mismatch for roi_head.bbox_head.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([4, 1024]).
size mismatch for roi_head.bbox_head.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([4]).
size mismatch for roi_head.bbox_head.fc_reg.weight: copying a param with shape torch.Size([320, 1024]) from checkpoint, the shape in current model is torch.Size([12, 1024]).
size mismatch for roi_head.bbox_head.fc_reg.bias: copying a param with shape torch.Size([320]) from checkpoint, the shape in current model is torch.Size([12]).
2022-06-07 16:41:01,035 - mmdet - INFO - Start running, host: root@7a73f7b358c4, work_dir: /content/mmdetection/tutorial_exps
2022-06-07 16:41:01,037 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) StepLrUpdaterHook
(NORMAL      ) CheckpointHook
(LOW         ) EvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_train_epoch:
(VERY_HIGH   ) StepLrUpdaterHook
(NORMAL      ) NumClassCheckHook
(LOW         ) IterTimerHook
(LOW         ) EvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_train_iter:
(VERY_HIGH   ) StepLrUpdaterHook
(LOW         ) IterTimerHook
(LOW         ) EvalHook
 --------------------
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL      ) CheckpointHook
(LOW         ) IterTimerHook
(LOW         ) EvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
after_train_epoch:
(NORMAL      ) CheckpointHook
(LOW         ) EvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_val_epoch:
(NORMAL      ) NumClassCheckHook
(LOW         ) IterTimerHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_val_iter:
(LOW         ) IterTimerHook
 --------------------
after_val_iter:
(LOW         ) IterTimerHook
 --------------------
after_val_epoch:
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
after_run:
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
2022-06-07 16:41:01,038 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2022-06-07 16:41:01,040 - mmdet - INFO - Checkpoints will be saved to /content/mmdetection/tutorial_exps by HardDiskBackend.
2022-06-07 16:41:17,697 - mmdet - INFO - Epoch [1][10/25]	lr: 2.500e-03, eta: 0:04:25, time: 0.914, data_time: 0.236, memory: 2790, loss_rpn_cls: 0.0267, loss_rpn_bbox: 0.0173, loss_cls: 0.5377, acc: 81.6211, loss_bbox: 0.3947, loss: 0.9764
2022-06-07 16:41:21,039 - mmdet - INFO - Epoch [1][20/25]	lr: 2.500e-03, eta: 0:02:54, time: 0.334, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0149, loss_rpn_bbox: 0.0119, loss_cls: 0.1753, acc: 93.4570, loss_bbox: 0.3254, loss: 0.5275
2022-06-07 16:41:28,575 - mmdet - INFO - Epoch [2][10/25]	lr: 2.500e-03, eta: 0:02:16, time: 0.558, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0167, loss_rpn_bbox: 0.0138, loss_cls: 0.1519, acc: 94.7656, loss_bbox: 0.2673, loss: 0.4497
2022-06-07 16:41:31,944 - mmdet - INFO - Epoch [2][20/25]	lr: 2.500e-03, eta: 0:02:01, time: 0.337, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0128, loss_rpn_bbox: 0.0127, loss_cls: 0.1325, acc: 94.9316, loss_bbox: 0.2084, loss: 0.3664
2022-06-07 16:41:39,445 - mmdet - INFO - Epoch [3][10/25]	lr: 2.500e-03, eta: 0:01:48, time: 0.569, data_time: 0.236, memory: 2790, loss_rpn_cls: 0.0059, loss_rpn_bbox: 0.0102, loss_cls: 0.0972, acc: 96.2500, loss_bbox: 0.1600, loss: 0.2733
2022-06-07 16:41:42,958 - mmdet - INFO - Epoch [3][20/25]	lr: 2.500e-03, eta: 0:01:40, time: 0.349, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0088, loss_rpn_bbox: 0.0133, loss_cls: 0.1474, acc: 94.4336, loss_bbox: 0.2652, loss: 0.4346
2022-06-07 16:41:50,449 - mmdet - INFO - Epoch [4][10/25]	lr: 2.500e-03, eta: 0:01:31, time: 0.562, data_time: 0.231, memory: 2790, loss_rpn_cls: 0.0064, loss_rpn_bbox: 0.0134, loss_cls: 0.1168, acc: 95.5566, loss_bbox: 0.2201, loss: 0.3567
2022-06-07 16:41:53,973 - mmdet - INFO - Epoch [4][20/25]	lr: 2.500e-03, eta: 0:01:25, time: 0.353, data_time: 0.027, memory: 2790, loss_rpn_cls: 0.0035, loss_rpn_bbox: 0.0117, loss_cls: 0.1179, acc: 95.5566, loss_bbox: 0.2133, loss: 0.3464
2022-06-07 16:42:01,892 - mmdet - INFO - Epoch [5][10/25]	lr: 2.500e-03, eta: 0:01:18, time: 0.595, data_time: 0.237, memory: 2790, loss_rpn_cls: 0.0040, loss_rpn_bbox: 0.0092, loss_cls: 0.1003, acc: 96.2695, loss_bbox: 0.2087, loss: 0.3223
2022-06-07 16:42:05,430 - mmdet - INFO - Epoch [5][20/25]	lr: 2.500e-03, eta: 0:01:13, time: 0.352, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0037, loss_rpn_bbox: 0.0107, loss_cls: 0.0903, acc: 96.7090, loss_bbox: 0.1845, loss: 0.2892
2022-06-07 16:42:12,992 - mmdet - INFO - Epoch [6][10/25]	lr: 2.500e-03, eta: 0:01:07, time: 0.567, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0017, loss_rpn_bbox: 0.0082, loss_cls: 0.0786, acc: 97.1777, loss_bbox: 0.1799, loss: 0.2685
2022-06-07 16:42:16,595 - mmdet - INFO - Epoch [6][20/25]	lr: 2.500e-03, eta: 0:01:02, time: 0.363, data_time: 0.027, memory: 2790, loss_rpn_cls: 0.0029, loss_rpn_bbox: 0.0100, loss_cls: 0.0891, acc: 96.5332, loss_bbox: 0.1856, loss: 0.2876
2022-06-07 16:42:24,486 - mmdet - INFO - Epoch [7][10/25]	lr: 2.500e-03, eta: 0:00:56, time: 0.591, data_time: 0.238, memory: 2790, loss_rpn_cls: 0.0043, loss_rpn_bbox: 0.0096, loss_cls: 0.0904, acc: 96.6113, loss_bbox: 0.1740, loss: 0.2783
2022-06-07 16:42:28,147 - mmdet - INFO - Epoch [7][20/25]	lr: 2.500e-03, eta: 0:00:52, time: 0.364, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0019, loss_rpn_bbox: 0.0116, loss_cls: 0.0926, acc: 96.1816, loss_bbox: 0.1774, loss: 0.2835
2022-06-07 16:42:35,802 - mmdet - INFO - Epoch [8][10/25]	lr: 2.500e-03, eta: 0:00:45, time: 0.572, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0026, loss_rpn_bbox: 0.0091, loss_cls: 0.0777, acc: 96.8262, loss_bbox: 0.1420, loss: 0.2314
2022-06-07 16:42:39,346 - mmdet - INFO - Epoch [8][20/25]	lr: 2.500e-03, eta: 0:00:41, time: 0.354, data_time: 0.025, memory: 2790, loss_rpn_cls: 0.0036, loss_rpn_bbox: 0.0082, loss_cls: 0.0777, acc: 97.2168, loss_bbox: 0.1590, loss: 0.2485
2022-06-07 16:42:46,922 - mmdet - INFO - Epoch [9][10/25]	lr: 2.500e-04, eta: 0:00:35, time: 0.565, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0026, loss_rpn_bbox: 0.0082, loss_cls: 0.0658, acc: 97.4902, loss_bbox: 0.1351, loss: 0.2116
2022-06-07 16:42:50,443 - mmdet - INFO - Epoch [9][20/25]	lr: 2.500e-04, eta: 0:00:31, time: 0.352, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0014, loss_rpn_bbox: 0.0066, loss_cls: 0.0571, acc: 97.8418, loss_bbox: 0.1133, loss: 0.1783
2022-06-07 16:42:58,001 - mmdet - INFO - Epoch [10][10/25]	lr: 2.500e-04, eta: 0:00:25, time: 0.567, data_time: 0.233, memory: 2790, loss_rpn_cls: 0.0034, loss_rpn_bbox: 0.0081, loss_cls: 0.0678, acc: 97.3926, loss_bbox: 0.1332, loss: 0.2125
2022-06-07 16:43:01,493 - mmdet - INFO - Epoch [10][20/25]	lr: 2.500e-04, eta: 0:00:21, time: 0.350, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0059, loss_cls: 0.0594, acc: 97.6758, loss_bbox: 0.1294, loss: 0.1955
2022-06-07 16:43:09,042 - mmdet - INFO - Epoch [11][10/25]	lr: 2.500e-04, eta: 0:00:15, time: 0.567, data_time: 0.234, memory: 2790, loss_rpn_cls: 0.0009, loss_rpn_bbox: 0.0069, loss_cls: 0.0638, acc: 97.6270, loss_bbox: 0.1217, loss: 0.1932
2022-06-07 16:43:12,554 - mmdet - INFO - Epoch [11][20/25]	lr: 2.500e-04, eta: 0:00:11, time: 0.351, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0014, loss_rpn_bbox: 0.0073, loss_cls: 0.0571, acc: 97.8711, loss_bbox: 0.1212, loss: 0.1869
2022-06-07 16:43:20,107 - mmdet - INFO - Epoch [12][10/25]	lr: 2.500e-05, eta: 0:00:05, time: 0.567, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0017, loss_rpn_bbox: 0.0061, loss_cls: 0.0563, acc: 97.9199, loss_bbox: 0.1246, loss: 0.1887
2022-06-07 16:43:23,598 - mmdet - INFO - Epoch [12][20/25]	lr: 2.500e-05, eta: 0:00:01, time: 0.349, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0016, loss_rpn_bbox: 0.0048, loss_cls: 0.0511, acc: 97.9297, loss_bbox: 0.0946, loss: 0.1520
2022-06-07 16:43:25,323 - mmdet - INFO - Saving checkpoint at 12 epochs


[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 25/25, 9.8 task/s, elapsed: 3s, ETA:     0s
---------------iou_thr: 0.5---------------


2022-06-07 16:43:30,260 - mmdet - INFO -
+------------+-----+------+--------+-------+
| class      | gts | dets | recall | ap    |
+------------+-----+------+--------+-------+
| Car        | 62  | 133  | 0.984  | 0.888 |
| Pedestrian | 13  | 40   | 0.846  | 0.768 |
| Cyclist    | 7   | 50   | 0.571  | 0.114 |
+------------+-----+------+--------+-------+
| mAP        |     |      |        | 0.590 |
+------------+-----+------+--------+-------+
2022-06-07 16:43:30,268 - mmdet - INFO - Epoch(val) [12][25]	AP50: 0.5900, mAP: 0.5899
# load tensorboard in colab
%load_ext tensorboard

# see curves in tensorboard
%tensorboard --logdir ./tutorial_exps
<IPython.core.display.Javascript object>
img = mmcv.imread('kitti_tiny/training/image_2/000068.jpeg')

model.cfg = cfg
result = inference_detector(model, img)
show_result_pyplot(model, img, result)

png

分割线

Detection3D

单模态点云-3DDetect

可以简单的把流程看做: 把. bin点云数据 转换为 .obj点云和预测 3D 框的可视化结果

%cd /content/mmdetection3d
!mkdir checkpoints
!wget -c https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth \
-O checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth

!wget -c https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth \
-O checkpoints/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth

!python \
demo/pcd_demo.py \
demo/data/kitti/kitti_000008.bin \
configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py \
checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth \
--out-dir /content/mmdetection3d/result/

!python \
demo/pcd_demo.py \
demo/data/sunrgbd/sunrgbd_000017.bin \
configs/votenet/votenet_16x8_sunrgbd-3d-10class.py \
checkpoints/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth \
--out-dir /content/mmdetection3d/result/
/content/mmdetection3d
mkdir: cannot create directory ‘checkpoints’: File exists
--2022-06-20 16:05:19--  https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK

    The file is already fully retrieved; nothing to do.

--2022-06-20 16:05:20--  https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK

    The file is already fully retrieved; nothing to do.

/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
/content/mmdetection3d/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
  'dir_offset and dir_limit_offset will be depressed and be '
load checkpoint from local path: checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
[0m/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
  'Unnecessary conv bias before batch/instance norm')
load checkpoint from local path: checkpoints/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m

多模态点云加图像-3DDetect

通常是 点云+图像, 数据集需要额外的 annotation 提供 3D 到 2D 的仿射矩阵

!wget -c https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth \
-O checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth

!rm -rf result/kitti_000008

!python \
demo/multi_modality_demo.py \
demo/data/kitti/kitti_000008.bin \
demo/data/kitti/kitti_000008.png \
demo/data/kitti/kitti_000008_infos.pkl \
configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py \
checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth \
--out-dir /content/mmdetection3d/result/

import matplotlib.pyplot as plt

plt.figure(figsize=(25, 20))
plt.imshow(plt.imread('result/kitti_000008/kitti_000008_pred.png'))
--2022-06-23 18:07:17--  https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.252.96.28
Connecting to download.openmmlab.com (download.openmmlab.com)|47.252.96.28|:443... connected.
HTTP request sent, awaiting response... 200 OK

    The file is already fully retrieved; nothing to do.

/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
/content/mmdetection3d/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
  'dir_offset and dir_limit_offset will be depressed and be '
load checkpoint from local path: checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
/content/mmdetection3d/mmdet3d/models/fusion_layers/coord_transform.py:35: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  if 'pcd_rotation' in img_meta else torch.eye(
[0m




<matplotlib.image.AxesImage at 0x7f7100889490>

png

单目图像-3DDetect

可以理解为在多模态上去掉点云数据 (当然数据集会有所变动), 效果不如多模态

!wget -c https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth \
-O checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth

!python \
demo/mono_det_demo.py \
demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg \
demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525_mono3d.coco.json \
configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py \
checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth \
--out-dir /content/mmdetection3d/result/

import matplotlib.pyplot as plt

plt.figure(figsize=(25, 20))
plt.imshow(plt.imread('result/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525_pred.png'))
--2022-06-23 18:06:22--  https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK

    The file is already fully retrieved; nothing to do.

/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
load checkpoint from local path: checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m




<matplotlib.image.AxesImage at 0x7f7100999a50>

png

点云-Segment

由于图像/视频很难做到定位以及测距的目标, 目前做 segmentation 只能用点云, 而且目前的模型仅支持室内

!wget -c https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth \
-O checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth


!python \
demo/pc_seg_demo.py \
demo/data/scannet/scene0000_00.bin \
configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py \
checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth \
--out-dir /content/mmdetection3d/result/
--2022-06-20 17:28:15--  https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK

    The file is already fully retrieved; nothing to do.

/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
  'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmseg/models/losses/cross_entropy_loss.py:236: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.
  'Default ``avg_non_ignore`` is False, if you would like to '
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
  'Unnecessary conv bias before batch/instance norm')
load checkpoint from local path: checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m

分割线

借物表

[1]: https://openbayes.com/console/wrh/containers/t93t3LTXlgU

[2]: MMDetection 2.3 安装教程

[3]: https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html#mmdetection

[4]: https://colab.research.google.com/github/ZwwWayne/mmdetection/blob/update-colab/demo/MMDet_Tutorial.ipynb#scrollTo=8M5KUnX7Np3h